Quantum information inequalities via tracial positive linear maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum information inequalities via tracial positive linear maps

Abstract. We present some generalizations of quantum information inequalities involving tracial positive linear maps between C∗-algebras. Among several results, we establish a noncommutative Heisenberg uncertainty relation. More precisely, we show that if Φ : A → B is a tracial positive linear map between C∗-algebras , ρ ∈ A is a Φ-density element and A,B are self-adjoint operators of A such th...

متن کامل

Non-linear Information Inequalities

We construct non-linear information inequalities from Matúš’ infinite series of linear information inequalities. Each single non-linear inequality is sufficiently strong to prove that the closure of the set of all entropy functions is not polyhedral for four or more random variables, a fact that was already established using the series of linear inequalities. To the best of our knowledge, they ...

متن کامل

Μ Cebyevs Type Inequalities for Positive Linear Maps of Selfadjoint Operators in Hilbert Spaces

Some inequalities for positive linear maps of continuous synchronous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the involved operators, are given. Applications for power function and logarithm are provided as well.

متن کامل

Matrix Inequalities Involving a Positive Linear Map

Let A be a Hermitian matrix, let be a normalized positive linear map and let f be a continuous real valued function. Real constants and such that (f(A)) f(((A)) (f(A)) are determined. If f is matrix convex then can be taken to be 1. A uniied approach is proposed so that the problem of determining and is reduced to solving a single variable convex minimization problem. As an illustration, the re...

متن کامل

Linear Matrix Inequalities for RobustStrictly Positive Real

A necessary and suucient condition is proposed for the existence of a xed polynomial p(s) such that the rational function p(s)=q(s) is robustly strictly positive real when q(s) is a given Hurwitz polynomial with polytopic uncertainty. It turns out that the whole set of candidates p(s) is a convex subset of the cone of positive semideenite matrices, resulting in a straightforward strictly positi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2017

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.10.027